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We investigate tracer advection in fractal media with finite correlation length. The process is superdiffusive
at early times and transforms to a classical diffusion regime later. At large time the spatial tail of the concen-
tration has a two-stage structure with a long-distant part corresponding to superdiffusive regime.
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I. INTRODUCTION

Tracer advection in random velocity field with long-range
correlations remains a subject of active interest �see Refs.
�1–5�, and references therein�. Such velocity distribution
may describe fluid flow in media with fractal properties, e.g.,
moisture infiltration in the rock matrix over the fracture set
with fractal structure �2,6,7�. The tracer transport in a self-
similar velocity field �characterized by power-law decay of
pair correlation function� was studied in Refs. �8,9�. It has
been shown that the transport is superdiffusive when the
power exponent of the pair correlation function is less than 2.
Along with a temporal dependence of characteristic size of
the main body of a tracer particle cloud R�t� examined in
Refs. �8,9�, the behavior of the concentration at large dis-
tances r�R�t� �in the tail� may be very important �espe-
cially, for the reliability assessments of radioactive waste dis-
posal in geological media�. An expression for the
concentration tail in the stretched Gaussian form was pro-
posed in Refs. �10–12� for tracer subdiffusion over fractal
basing on scale arguments. It has been shown in Ref. �9� that
in the problem of random advection the spatial dependence
of concentration in the tail is described by a “compressed”
Gaussian form depending on a self-similar variable, which is
the same as for the main body of concentration.

It should be noted that in Ref. �8� as well as in Ref. �9� the
spatial interval of self-similarity of the advection-velocity
field �where its correlation function has power-law decay�
was supposed to extend up to infinity. In reality, this interval
may be bounded from above resulting from a finite correla-
tion length of fractal medium �e.g., in percolation media
above the percolation threshold�. Note that in the problem of
moisture infiltration over the fracture system, finiteness of
the correlation length leads to the appearance of mean infil-
tration velocity �2�.

The aim of the present paper is to study the influence of a
finite correlation length on tracer transport over fractal me-
dium in the random advection model. Special attention is
paid to the analysis of concentration behavior at large dis-
tances �concentration tails�.

II. PROBLEM FORMULATION

The advection in a given stationary velocity field v��r�� is
described by the following equation for the particles’ concen-
tration c�r� , t�:

�c

�t
+ ��v�c� = 0. �1�

The velocity field in Eq. �1� satisfies incompressibility equa-
tion div v��r��=0. We consider the problem with initial condi-
tion c�r� ,0�=c0�r��.

The advection velocity may be represented in the form

v��r�� = u� + V� �r�� , �2�

where

�v��r��� = u� , �V� �r��� = 0, �3�

u� is the mean velocity, and �¯� means averaging over en-
semble of realization, or spatial averaging over the scales
larger than correlation length �.

In the spatial interval of fractality the pair correlation
function of the fluctuating velocity components obey power
law

Kij
�2��r�1,r�2� = �Vi�r�1�Vj�r�2�� � V2�a

r
�2h

, a � r � � , �4�

where r= 	r�1−r�2	, a is a lower bound of the fractality interval,
and V2 determines the characteristic value of Kij

�2� at r�a.
Outside the fractality interval, at the distances r��, correla-
tions decay exponentially fast.

With considering these properties, the Fourier transform
of the two-point correlation function has the form

Kij
�2�
k�1,k�2,�� = �2��3	�k�1 + k�2�Kij

�2�
k�1,�� , �5�

Kij
�2�
k�,�� � V2a2h�k2h−3, k � �−1,

�3−2h, k � �−1,
 �6�

where k= 	k�	. From here, one can see that Kij
�2�
k� ,�� is a ho-

mogenous function of variables k� and �−1, that is,

Kij
�2�

k�,�/
� = 
2h−3Kij

�2�
k�,�� . �7�

By analogy with the theory of critical phenomena �18�, we
call the parameter h the scaling dimension of velocity fluc-

tuation V� �r��. Similar relations are valid for any multipoint
velocity correlator.

According to Refs. �8,9�, anomalous diffusion regimes in
random advection model �under the condition �→�� occur
only when the exponent in Eq. �4� is less than 2, i.e., h�1.
Henceforth we consider only this nontrivial case.
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III. GREEN’S FUNCTION AND SCALING ANALYSIS

Tracer concentration at an arbitrary instant can be ex-
pressed through its initial distribution by

c�r�,t� =� d3r�G�r�,r��;t�c0�r��� , �8�

where G�r� ,r�� ; t� is the Green’s function being the solution of
the equation

� �

�t
+

�

�xi
vi�r��G�r�,r��;t� = 0 �9�

with the initial condition

G�r�,r��,0� = 	�r� − r��� . �10�

Of practical interest is the concentration averaged over an
ensemble of medium realizations c̄�r� , t���c�r̄ , t��. It satisfies

the equation obtained from Eq. �8� by replacing G with Ḡ,

where Ḡ�r�−r�� , t���G�r� ,r�� ; t�� is the ensemble-averaged
Green’s function �henceforth called Green’s function for sim-
plicity�. We stress that the ensemble-averaged functions c̄

and Ḡ refer to the whole space �not to the separate fractal
cluster� and are normalized to three-dimensional volume.
Thus, all the information about fractality remains in the ve-
locity field properties �power-law behavior, parameters h and

��. The calculation of Ḡ�r�−r�� , t� is conducted by means of
the “cross” diagrammatic technique developed in Ref. �13�
and applied in Refs. �14–16� for transport phenomena in dis-
ordered media.

Taking into account Eqs. �2� and �10�, we rewrite Eq. �9�
in Laplace representation

�p + ui
�

�xi
G�r�,r��,p� = 	�r� − r��� + T̂�r��G�r�,r��,p� , �11�

where

T̂�r�� = − Vi
�

�xi
. �12�

Considering T̂�r�� as the perturbation operator we repre-
sent a solution of Eq. �11� in the form of a successive ap-
proximation series

G�r�,r��,p� = G0�r� − r��,p� +� d3r1G0�r� − r�1,p�T�r�1�

�G0�r�1 − r��,p� +� � d3r1d3r2G0�r� − r�1,p�T̂�r�1�

�G0�r�1 − r�2,p�T̂�r�2�G0�r�2 − r��,p� + ¯ , �13�

where G0 is the unperturbed Green’s function obeying the
equation

�p + ui
�

�xi
G0�r� − r��,p� = 	�r� − r��� .

The following diagrammatic representation corresponds to
the analytical series �13�

�14�

Here, the double line stands for the function G�r� ,r�� , p�, each
thin line for G0�r�n−r�m , p�, the arguments r�n and r�m corre-
spond to the endpoints of G-lines, crosses stand for pertur-
bation operator �12�. The integration over all inner arguments
is implied.

Now we need to average the series of Eq. �14� over the
ensemble of medium realization. Velocity fluctuations ap-
pearing in the cross elements of Eq. �14� are the subject to
average. As usual, the averaged product of an arbitrary num-
ber of random factors is reduced to a sum of products of
irreducible averages �cumulants�. Each term of the sum is
associated with a certain partitioning of the initial product
into groups of the factors. The result of the averaging of Eq.
�14� takes the form

�15�

Here the thick line represents the averaged Green’s function

Ḡ and dashed lines connect crosses belonging to a common
cumulant. Further, we pick out all strongly connected dia-
grams �which cannot be divided into two parts by cutting of
single G0-line�. Denoting the sum of these irreducible dia-

grams as M̂, we can represent the expansion �15� in the form

Ḡ = G0 + G0M̂G0 + G0M̂G0M̂G0 + . . . .

This series is equivalent to the equation

Ḡ = G0 + G0M̂Ḡ ,

having the following analytical representation

Ḡ�r� − r��,p� = G0�r� − r��,p� +� d3r1d3r2G0�r� − r�1,p�

�M�r�1 − r�2,p�G0�r�1 − r��,p� . �16�

The regrouping of the terms in diagram expansion for M̂
allows one to represent this expansion as the sum of irreduc-
ible skeleton diagrams �17�
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�17�
Here all the solid lines correspond to Ḡ-functions.
In Fourier representation, Eq. �16� takes the form

Ḡ
k�,p� =
1

p + ik� · u� − M
k�,p�
. �18�

In this representation of Eq. �17�, gradients of perturbation
operator �12� are replaced by the wave vectors multiplied by
i, corresponding to the arguments of adjoining horizontal
lines �either of two by virtue of incompressibility condition�.
Each dashed line arising from a cross is associated with its
own wave vector over which integration is performed. For
every cross vertex �as well as for every “source” of dashed
lines connecting the crosses of a particular cumulant�, the
conservation law for wave vectors is fulfilled. Substituting
Eq. �18� into diagrammatic expansion �17�, one obtains an
integral equation for M
k� , p�.

This technique was originally intended �13� �see also Ref.
�17�� for the calculation of electron’s Green function in im-
purity metals. The theory of impurity metals �13,17� uses
essential simplifications, connected with small impurity con-
centration and the proximity of the electron momenta to
Fermi momentum. This allowed confining the calculations of
M
k� , p� with the first skeleton diagram in Eq. �17�. Such
simplifications are impossible in our problem because all the
diagrams in Eq. �17� are of the same order of magnitude.
However, correlation functions over which the diagrammatic
expansion takes place possess the property of scaling invari-
ance �7�. Thus, it is natural to suppose �and then to prove�
that the mass operator itself also possesses this property. Ac-
cording to this conjecture, scaling relations for M
k� , p�
should have the form

M

−1k�,
−p,
�� = 
−M
k�,p,�� . �19�

Here we also supposed the equality of the scaling dimensions
 of Laplace variable and mass operator, which follows from
their additive entry into Eq. �18�.

Consider an arbitrary summand of the expansion �17�
containing, for example, n-point correlation function. Scaling
index of this term is the sum of the indexes of the elements
of this diagram. These elements include n-point group of
velocity correlators �scaling index n�h−3��, n gradients �n�,
�n−1� Green’s functions ��n−1�G�, and 3n-dimensional
differential of wave vectors �3n�. �Since the wave vectors q�
used as integration variables are combined additively with k�,
the corresponding scaling indexes are equal to that of k�.� The
sum of the enumerated indexes is equal to the scaling dimen-
sion of M, thus we obtain

 = n + �n − 1�G + n�h − 3� + 3n . �20�

Taking into account that according to definition, scaling di-
mensions of Fourier-Laplace transform of Green’s function
G and Laplace variable  are connected with the relation

G = −  , �21�

we arrive at

 = 1 + h , �22�

independently of the order of diagram. Since Eq. �19� with
=1+h is valid for each term in Eq. �17�, it holds for the
series as a whole.

From the relations stated we may write a general form of
mass operator

M
k�,p� = − pF��,k��, � = k2�Vah

p
�2/�1+h�

, �23�

where F is the dimensionless function of the two dimension-
less variables and the factor Vah is obtained by using Eq. �4�.
One more conclusion concerns the mean velocity u� . Both the

advection velocity V� �r� and u� have the same physical dimen-
sions and so should have the same scaling dimensions.
Hence, we have

u = V = h . �24�

Thus, as soon as the mean velocity may depend only on
correlation length, we may write

u � V�a

�
�h

. �25�

Note that u=0 in the limit �→�.

IV. MASS OPERATOR ASYMPTOTICS

Let us begin with the analysis of the expression for the
first diagram in Eq. �17�

M
k�,p� � − kikj� Kij
�2�
q� ,��d3q

p + ik� · u� − iq� · u� − M
k� − q� ,p�
. �26�

In this section, we assume Laplace variable p to be real and
positive, while in the next section p takes arbitrary complex
values, and there M
k� , p� becomes the analytic continuation
from the real positive semiaxis into the whole of the complex
plane. Two limiting cases are possible. The first one corre-
sponds to the inequality

max�k,� p

Vah�1/�1+h� � �−1. �27�

In the limit �→�, the mass operator becomes equal to that
obtained in Ref. �9�. It follows from the results of Ref. �9�
that the integral �26� �at �→�� is dominated by

q � k when p � Vahk1+h and q � �p/Vah�1/�1+h� when p

� Vahk1+h. �28�

Hence in the case of finite value of �, obeying the inequality
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�27�, the function Kij
�2�
q� ,�� in the integrand of Eq. �26� can

be replaced by the expression given by the first line of Eq.
�6� and the terms iq� ·u� and ik� ·u� in denominator of Eq. �26�
may be neglected:

M
k� − q� ,p� � Vahq1+h � qu,ku .

This remains valid for all diagrams of the higher order of
the diagrammatic expansion �17�. As a result, an expression
for M
k� , p� in the limit �27� takes the form

M
k�,p� = − pF��,k�� � − pF��,�� = − p���� , �29�

where the properties of function ���� are described in Ref.
�9�.

In the opposite limiting case,

max�k,� p

Vah�1/�1+h� � �−1, �30�

the main contribution to the integral �26� is given by the
values of q of the order of �−1. Therefore, in the denominator
of Eq. �26�, we can neglect both p and ik� ·u� and put M
k�
−q� , p��M
−q� ,0��Vahq1+h. As a result, the integral does
not depend on the variables p and k� and is of the order of u�.
The same is valid for all the integrals of higher-order dia-
grams in the expansion �17�. Accordingly, the mass operator
takes the form

M
k�,p� � − Dk2, �31�

where, in accordance with Eq. �25�, the effective diffusion
coefficient is

D � u� . �32�

V. TRACER CONCENTRATION BEHAVIOR

Now we proceed to analyze the tracer concentration be-
havior at times great enough for the size of tracer cloud to
essentially exceed its initial value. In this case, Green’s func-
tion directly describes the concentration behavior. The func-

tion Ḡ�r� , t� is determined by inverse Fourier-Laplace trans-
formation of the function �18�:

Ḡ�r�,t� = �
b−i�

b+i� dp

2�i
� d3k

�2��3

exp�ik� · r� + pt�

p + ik� · u� − M�k�,p�
, Re b � 0.

�33�

The analysis shows that the behavior of the system is prin-
cipally different in two time intervals with the boundary be-
tween them determined by

t* =
�

u
�

�1+h

Vah . �34�

In the interval t� t*, for the main body of particles’ cloud
the Laplace variable in the integrand of Eq. �33� obeys the
condition p� t−1� t*

−1�Vah�−�1+h�. Thus, the inequality �27�
is fulfilled and the mass operator is determined by the ex-
pression �29�. In this case characteristic values of k in Eq.

�33� are of the order of k��p /Vah�1/�1+h�. From here, the
inequality ku� p ,M follows and hence we can neglect the
term ik� ·u� in the denominator of Eq. �33�. This is all the more
true in the region of tails as far as there p� t−1 is valid. Thus
in the interval t� t*, we come to the superdiffusive regime
studied in �9�. In this regime the size of the particles’ cloud
�R�t�, which grows with time according to

R�t� = �Vaht�1/�1+h� �35�

�the formula �23� of the work �9�� and the Green’s function at
long distances behaves as

Ḡ�r�,t� �
B

�4��3/2R�t�3�3�1−h�/�1+h� exp
− C�1+h/h�, � =
r

R�t�
,

�36�

where R�t� is determined by Eq. �35� and the constants
B ,C�1 were calculated in Ref. �9�.

Note that the relation between the exponent 1
1+h in Eq.

�35� and the exponent 1+h
h of the scaled variable � in Eq. �36�

is consistent with the relation between fractal dimension of
random walk dw

−1 and the exponent u=
dw

dw−1 of scaled variable
for subdiffusion on fractal �see, e.g., Ref. �11��. These rela-
tions predict that in superdiffusive regime the concentration
at long distances decays faster than a Gaussian, while in
subdiffusive mode the situation is inverse one.

At large times t� t*, for the main body of particles’ cloud
we have an estimate p� t−1� t*

−1. Hence, it follows the in-
equality p�Vah�−�1+h� corresponding to the condition �30�.
Therefore, the mass operator takes the form �31� and the
integral in Eq. �33� leads to the classical diffusion expression

Ḡ�r�,t� � �4�Dt�−3/2 exp�−
�r� − u�t�2

4Dt
� . �37�

This result is in agreement with the one proposed in Ref. �3�,
where tracer dispersion in fractal media with finite correla-
tion length has been studied numerically.

Now consider the far region of concentration tail. As it
follows from the calculations, the characteristic wave vector
values dominating the integral in Eq. �33� are determined by

k � max� 1
�Dt

,
r

2Dt �38�

and for distances

r � ut �39�

the condition �30� violates. Therefore, at distances of Eq.
�39�, the calculation in Eq. �33� must be performed using the
mass operator determined by Eq. �29�. This leads to a super-
diffusive form �36� of the concentration tail at r�ut. As a
result, the tail at t� t* has a two-stage structure with the near
part determined by the classical diffusion law of Eq. �37� and
the remote part determined by the superdiffusive expression
of Eq. �36�. Comparing Eqs. �36� and �37�, one can see that
the remote superdiffusive part of the tail decays faster than
the near part.
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The transition from one tail profile to another takes place
at r*�ut. A characteristic value of the concentration there
has an estimate

c�r*,t� � exp�− A
t

t*
� , �40�

where A�1.
Note that the time t* �Eq. �34�� of the transition from

superdiffusive regime to classical diffusion may be inter-
preted in two different ways. On the one hand, at times t
� t*= �1+h

Vah the particles’ cloud size becomes of the order of
correlation length R�t*���. So, the medium may be consid-
ered as statistically homogeneous at t� t* with tracer particle
dispersion varying according to the classical diffusion law
�37�. On the other hand, from the estimate R�t*���, we
come to the relations

R�t*�
u

�
�

u
�

�1+h

Vah �
�2

D
, �41�

which mean that the particles’ cloud size determined either
by superdiffusive or classical diffusive regime at t� t* be-
comes comparable with the displacement ut* due to the drift
with the mean velocity u.

A qualitative illustration concerning the formation of con-
centration tails can be made. At early times t� t*, tracer
transport occurs with velocities v�r��V� a

r
�h. At large times

t� t*, the majority of tracer particles move with the veloci-
ties v�v��� uncorrelated with respect to directions at the
distances r��. As usual, this leads to the classical diffusion.
One can say that “collisions” of moisture elements destroy
the correlations at r��. However, some particles exist re-
taining their correlated motion �without “collisions”�. As a
result, these particles cover much more distance than the
particles in the main body. Their number is small and they

form superdiffusive tail at far distances at large times. So, the
region of superdiffusive tail at t� t* is determined by the
condition r�v���t. In this region, classical diffusion with the
length of a jump � and the velocity v��� at each jump is
impossible.

VI. CONCLUSION

In summary, the influence of a finite correlation length on
the process of tracer random advection in fractal medium has
been investigated. A characteristic time t* is found, which
separates the intervals of different transport regimes. At early
times t� t*, the transport goes into superdiffusive regime
studied previously in Ref. �9�. At late times t� t* �when the
particles’ cloud size becomes greater than the correlation
length�, this regime transforms to classical diffusion, with the
effective diffusion coefficient determined by the product of
drift velocity and correlation length. At these times, however,
the classical-diffusion profile of concentration holds only in
the main body and the near part of concentration tail. Outside
this region �in the “far tail”�, the concentration profile is
described by superdiffusive asymptotics.

A two-stage structure of the tail was obtained earlier in
another model �see Ref. �19�� and we suppose it is a general
property of systems, in which the type of transport regime
changes with time. In these cases, the more distant part of the
tail is considered, the earlier transport regime determines its
structure.
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